How to Draw the Minimum Cuts of a Planar Graph (Extended Abstract)

نویسندگان

  • Ulrik Brandes
  • Sabine Cornelsen
  • Dorothea Wagner
چکیده

We show how to utilize the cactus representation of all minimum cuts of a graph to visualize the minimum cuts of a planar graph in a planar drawing. In a first approach the cactus is transformed into a hierarchical clustering of the graph that contains complete information on all the minimum cuts. This approach is then extended to drawings in which the two vertex subsets of every minimum cut are separated by a simple closed curve. While both approaches work with any embedding-preserving drawing algorithm, we specifically discuss bend-minimum orthogonal drawings.  2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to draw the minimum cuts of a planar graph

We show how to utilize the cactus representation of all minimum cuts of a graph to visualize the minimum cuts of a planar graph in a planar drawing. In a first approach the cactus is transformed into a hierarchical clustering of the graph that contains complete information on all the minimum cuts. This approach is then extended to drawings in which the two vertex subsets of every minimum cut ar...

متن کامل

Cycles intersecting edge - cuts of prescribed sizes ( Extended abstract )

We prove that every cubic bridgeless graph G contains a 2-factor which intersects all (minimal) edge-cuts of size 3 or 4. This generalizes an earlier result of the authors, namely that such a 2-factor exists provided that G is planar. As a further extension, we show that every graph contains a cycle (a union of edge-disjoint circuits) that intersects all edge-cuts of size 3 or 4. Motivated by t...

متن کامل

Contiguous Minimum Single-Source-Multi-Sink Cuts in Weighted Planar Graphs

We present a fast algorithm for uniform sampling of contiguous minimum cuts separating a source vertex from a set of sink vertices in a weighted undirected planar graph with n vertices embedded in the plane. The algorithm takes O(n) time per sample, after an initial O(n) preprocessing time during which the algorithm computes the number of all such contiguous minimum cuts. Contiguous cuts (that ...

متن کامل

Flow equivalent trees in undirected node-edge-capacitated planar graphs

Given an edge-capacitated undirected graph G = (V ,E,C) with edge capacity c :E → R+, n = |V |, an s − t edge cut C of G is a minimal subset of edges whose removal from G will separate s from t in the resulting graph, and the capacity sum of the edges in C is the cut value of C. A minimum s − t edge cut is an s − t edge cut with the minimum cut value among all s − t edge cuts. A theorem given b...

متن کامل

Improved Minimum Cuts and Maximum Flows in Undirected Planar Graphs

In this paper we study minimum cut and maximum flow problems on planar graphs, both in static and in dynamic settings. First, we present an algorithm that given an undirected planar graph computes the minimum cut between any two given vertices in O(n log logn) time. Second, we show how to achieve the same O(n log logn) bound for the problem of computing maximum flows in undirected planar graphs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Geom.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2000